
●

○

◆

◆

◆

◆

◆

●

○

○

◆

●

○

●

●

3-22: Continuous Development

Agenda:
HW4 poll and discussion - https://pollev.com/jbell 

Q: what about 1 week each for HW1, HW2, 3 weeks for HW3, HW4 2 
weeks, but now finishes 1 week sooner?

A: Overwhelming “No” - we like 2 week deadlines
1 week for HW1, 2 weeks for rest - finish HW4 1 week sooner

Socket part of HW3 needed more guidance
More examples with mocks and spies

Activities in class with mocks + spies?
Titus Winters talk recap + discussion

Was there a recording? - Prof Bell will check
Q: Knowledge sharing - should it be the case that “everyone can 
resolve an issue” - how does this reconcile with “frontend people and 
backend people”

Balancing redundancy vs specialization
Discussion - motivations for continuous development

Project notes + discussion
Team meetings + activity - setting up CI/CD pipelines

https://pollev.com/jbell


●

○

○

○

●

○

◆

◆

◆

◆

◆

◆

○

◆

◆

◆

◆

Q: Why is it more expensive to find a bug later in development process?

PR cost

Human cost of context switching to figure out and understand the 
code

Restructuring of other code if that depends on it

3/24: Continuous Development II
Agenda:

Project Discussion
Final deliverables information posted: https://neu-se.github.io/
CS4530-CS5500-Spring-2021/assignments/project-deliverable
Demo due on 16th, not 15th
No class on Apr 12, Apr 15 will be work on projects + demos if 
someone wants to show

Continuous development discussion
Q: How have you deployed applications before?

Personal website -> GitHub Pages (note - class website is like 
this!) - “works magically”
AWS Code Pipeline -> Automatically deploy to cloud, works 
magically
Vercel -> Like GitHub pages, integrates multiple repositories + 
runs react build script to create a deployment, integrates pull-
requests with GitHub
Copy files to a server?

Mostly crickets, but some “yes”
Jenkins pipelines

Q: What are these different deployment infrastructures based on?
Use a “bare metal” machine

Good: Control - I can do whatever I want, including of 
resources
Bad (Not automated): Not efficient to manually copy files to a 
server each time, maybe have a manual process to trigger a 
deployment. Systems administrators need to handle this
Bad (Resource utilization) - Difficulty of having multi-tenancy. 
Can’t enforce resource limitations.

https://neu-se.github.io/CS4530-CS5500-Spring-2021/assignments/project-deliverable
https://neu-se.github.io/CS4530-CS5500-Spring-2021/assignments/project-deliverable


◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

○

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

○

Bad (Latency to set up a new machine) - Probably on the 
order of weeks, certainly hours

Use a virtual machine running on bare metal (Early 2000’s) - 
VMWare/VirtualBox/EC2/GCP

Good: Can limit resources per-application (limit CPU + RAM)
Bad: Hogs resources/compute power - there is some 
overhead (running an OS)! Run Windows VM on Linux 
machine, run Ubuntu VM on a Gentoo machine

Use containers (Getting closer to 2010) - Docker
Good: Can limit resource per-application (CPU + RAM)
Good: Don’t run an OS in each container
Good/bad: Same OS as bare-metal machine

Orchestrate these deployments using a process like Kubernetes
Declaratively specify what we need: “3 docker containers 
running TownsService, with a load balancer in front of them, 
and spin up more TownsService if load is high”
DevOps Engineers/Site Reliability Engineer

Q: How has development of these computing infrastructures enabled 
new ways or generally changed how we build software?

Continuous deployment has become the norm
“Democratizes” building software - don’t need as much 
specialized knowledge just to get something up and running

Platform as a service (Heroku/Netlify) - enables access to 
these resources without training
Provide this benefit not only to the kinds of developers who 
would have built large-scale software already - but to 
everyone!

Easier to scale - build on common available abstractions
Increases performance (latency) - Speed of light can dominate 
the time to server a request

Easy way to say “Replicate across the world” - take 
advantage of Content Delivery Network (CDNs) that locate 
our services close to users

Not all glory: When services go down, out of luck
Not just one administrator -> this is good AND bad. Classic 
examples: Amazon Northern Virginia outage(s)

Not all glory: Difficult to monitor!
Not all glory: Doesn’t necessarily eliminate having a gate keeper 
to determine when/what to deploy
Can find bugs sooner - deploy faster, feedback faster

Q: Does continuous delivery mean that features are released fast?



◆

◆

Things are “in the pipeline” faster - releases happen often, but 
still probably takes at least a week from code being written it is 
deployed

Q: What kinds of things can we monitor from deployment?
A: KPI’s (key performance indicators) - business metrics, like: if you put out a 
new feature, how many users actually interact with that? If the feature is to 
make a process better/faster, does it now take less time for a user to 
complete that process?
A: Technical metrics (Response time, resource utilization, CPU load, error 
rate)


